GPU accelerated lattice Boltzmann simulation for rotational turbulence

نویسندگان

  • Huidan Yu
  • Rou Chen
  • Hengjie Wang
  • Zhi Yuan
  • Ye Zhao
  • Yiran An
  • Yousheng Xu
  • Luoding Zhu
چکیده

In this work, we numerically study decaying isotropic turbulence in periodic cubes with frame rotation using the lattice Boltzmann method (LBM) and present the results of rotation effects on turbulence. The implementation of LBM is on a GPU (Graphic Processing Unit) platform using CUDA (Compute Unified Device Architecture). Through the accelerated GPU-LBM simulation, we look into various effects of frame rotation on turbulence. It has been observed that rotation slows down the decay of kinetic energy and enstrophy. Rotation also breaks isotropy and induces vortex tubes in the direction of frame rotation. Characteristics related to velocity and its derivatives have been studied with and without rotation. Without rotation, the kinetic energy and enstrophy decay follow −10/7 and −17/7 scaling respectively whereas in the presence of rotation with the relatively small Rossby number (large rotation intensity), the energy decay slows down to −5/21 scaling when the initial isotropic turbulence energy spectrum is scaled to k4. These scalings with and without rotation are in quantitative agreements with the predictions fromKolmogorov hypotheses respectively. The skewness and kurtosis are seen more fluctuating in rotational turbulence, which agrees with the results from NS-based computation. Using this accelerated and validated GPU-LBM computation tool, we are further studying the inverse energy transfer behavior with and without rotation aiming to quantify the effects of rotation on the inverse energy transfer to reveal underlying physics of a particular stage of the turbulence development. The results will be presented in near future. Published by Elsevier Ltd

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalings of Inverse Energy Transfer and Energy Decay in 3-D Decaying Isotropic Turbulence with Non-rotating or Rotating Frame of Reference

Energy development of decaying isotropic turbulence in a 3-D periodic cube with non-rotating or rotating frames of reference is studied through direct numerical simulation using GPU accelerated lattice Boltzmann method. The initial turbulence is isotropic, generated in spectral space with prescribed energy spectrum E(κ)~κm in a range between κmin and ...

متن کامل

Lattice Boltzmann Method Application on Headwater at Lata Kinjang Waterfall, Malaysia

Headwater accident is a natural phenomenon that occurs in every flow channel, resulting in tremendous incidents that involve vulnerable lives and destruction of its surroundings. This study focuses on simulation of potential headwater accidents at Lata Kinjang waterfall (Perak, Malaysia) with the aim of understanding the behavior of headwater accidents from the hydraulic aspect. By deploying th...

متن کامل

Accelerating the D3Q19 Lattice Boltzmann Model with OpenACC and MPI

Multi-GPU implementations of the Lattice Boltzmann method are of practical interest as they allow the study of turbulent flows on large-scale simulations at high Reynolds numbers. Although programming GPUs, and in general power-efficient accelerators, typically guarantees high performances, the lack of portability in their low-level programming models implies significant efforts for maintainabi...

متن کامل

Numerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method

The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...

متن کامل

Evaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank

In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2014